

350

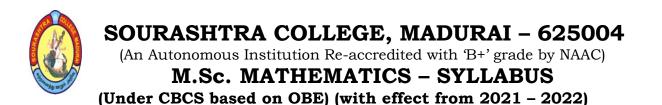
GRADUATE ATTRIBUTES

1. (**KB**) **A knowledge base for Mathematics**: Demonstrated competence in university level Mathematics, fundamentals of Mathematics, and specialized Mathematics knowledge appropriate to the program.

2. (PA) Problem analysis: An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve Mathematical problems in order to reach substantiated conclusions

3. (Inv.) Investigation: An ability to conduct investigations of complex problems by methods that include appropriate analysis and interpretation of data and synthesis of information in order to reach valid conclusions.

4. (Tools) Use of mathematical tools: An ability to create, select, apply, adapt, and extend appropriate techniques, resources to a range of mathematical activities, from simple to complex, with an understanding of the associated limitations.


5. (**Team**) **Individual and teamwork**: An ability to work effectively as a member and leader in teams, preferably in a multi–disciplinary setting.

6. (Comm.) Communication skills: An ability to communicate mathematical concepts within the profession and with society at large. Such ability includes reading, writing, speaking and listening, and the ability to comprehend and write effective reports and documentation, and to give and effectively respond to clear instructions.

7. (**Prof.**) **Professionalism**: An understanding of the roles and responsibilities of the professional Mathematician in society, especially the primary role of protection of the public and the public interest.

8. (Ethics) Ethics and equity: An ability to apply professional ethics, accountability, and equity.

9. (LL) Life-long learning: An ability to identify and to address their own educational needs in a changing world in ways sufficient to maintain their competence and to allow them to contribute to the advancement of knowledge

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO 1	To gain knowledge in foundational areas of Mathematics
PEO 2	To communicate mathematics accurately, precisely and effectively
PEO 3	To develop mathematical thinking
PEO 4	To apply mathematical knowledge
PEO 5	To be able to solve mathematical problems using technology

PROGRAMME OUTCOMES (POs)

Postgraduate **M.Sc. Mathematics** is a **2** – **year** degree programme with 4 semesters consisting of the following Programme Outcomes (POs). The students will be able to

PO 1	apply knowledge of mathematics to become competent professionals.
PO 2	identify and solve complex scientific problems using mathematical skills
PO 3	apply the mathematical concepts for the analysis and interpretational data
PO 4	enhance and adopt skills required for higher order employment or jobs through activities such as seminars, workshops and conferences.
PO 5	select, design and apply appropriate computational techniques to solve and models physical problems.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M.Sc. Mathematics Programme, the students are expected to

PSO1	understand the mathematical concepts and applications in various fields.
PSO2	handle the advanced techniques in various fields to solve variety of problems related to real life problems.
PSO3	have necessary skills and expertise in the field of research and developments through seminars and dissertation.
PSO4	learn abstract algebraic structures and topological structures.
PSO5	learn methods of finding optimal solutions of physical and industrial problems.

351

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

352

<u>M.Sc. MATHEMATICS – II YEAR</u> COURSE STRUCTURE – III SEMESTER

S. No	Subject Code	Subject Title	Hrs./ Week	Exam (Hrs.)	CA	SE	Total Marks	Credits
1.	21PMSC31	Core – 9: Field Theory and its Extension	6	3	25	75	100	5
2.	21PMSC32	Core – 10: Analysis – III	6	3	25	75	100	5
3.	21PMSC33	Core – 11: Functional Analysis – I	6	3	25	75	100	5
4.	21PMSC34	Core – 12: Statistics – I	6	3	25	75	100	5
5.	21PMSN31 21PMSN32	 NME: 1. Business Statistics 2. Mathematics For Competitive Examinations 	6	3	25	75	100	5
		Total	30					25

COURSE STRUCTURE – IV SEMESTER

S. No.	Sub. Code	Subject Title	Hrs. / Week	Exam (Hrs.)	CA	SE	Total Marks	Credits
1.	21PMSC41	Core – 13: Complex Analysis	6	3	25	75	100	5
2.	21PMSC42	Core – 14: Number Theory	6	3	25	75	100	5
3.	21PMSC43	Core – 15: Operations Research	6	3	25	75	100	5
4.	21PMSC44	Core – 16: Statistics – II	6	3	25	75	100	5
5.	21PMSE41 21PMSE42	ISE41Elective:1. Advanced Topology1SE422. Functional		3	25	75	100	5
		Analysis – II Total	30					25

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

353

COURSE STRUCTURE – III SEMESTER

S. No	Subject Code	Subject Title	Hrs./ Week	Exam (Hrs.)	CA	SE	Total Marks	Credits
1.	21PMSC31	Core – 9: Field Theory and its Extension	6	3	25	75	100	5
2.	21PMSC32	Core – 10: Analysis – III	6	3	25	75	100	5
3.	21PMSC33	Core – 11: Functional Analysis – I	6	3	25	75	100	5
4.	21PMSC34	Core – 12: Statistics – I	6	3	25	75	100	5
5.	21PMSN31 21PMSN32	 NME: 1. Business Statistics 2. Mathematics For Competitive Examinations 	6	3	25	75	100	5
		Total	30					25

- CA Class Assessment (Internal)
- SE Summative Examination
- NME Non Major Elective
- T Theory
- P Practical

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

							354
COURSE CODE	COURSE	COURSE TITLE		CATEGORY		Р	CREDITS
21PMSC31		IELD THEORY AND ITS EXTENSION		CORE – 9		Ι	5
YEAR	SEMESTER	INTERNA	AL EXTERN		AL	TOTAL	
II	III	25	75			100	
NATURE OF	Employability	🖌 🛛 Skill Oı	riented	✓ I	Entrep	prene	urship
COURSE							

COURSE DESCRIPTION:

The goal of this course is to help students learn the language of rigorous Mathematics. Students will learn how to read, understand, devise and communicate proofs of mathematical statements. A number of proof techniques (contrapositive, contradiction, and especially induction) will be emphasized. Topics to be discussed include Algebraic extensions. Finite extensions. Degree. Minimal polynomial. Adjoining roots of polynomials. Splitting field. Separable extensions. Fundamental Theorem of Galois Theory. Finite fields and their Galois groups.

COURSE OBJECTIVES:

To develop skills and to acquire knowledge on some of the basic concepts in Extension Fields ,Algebraic Extensions, Splitting fields, Polynomials solvable by radicals. Also we discuss about Roots of Polynomials, Finite Fields and their related concepts, and we introduce Galois theory also.

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	discuss Extension Fields and transcendence of e	Upto K5
CO 2	analyze Roots of the Polynomials and Construction by straight edge and compass	Upto K5
CO 3	explain more about roots and Elements of Galois theory	Upto K5
CO 4	provide information on Solvability by radicals, Galois groups over the rationals	Upto K5
CO 5	concentrate on finite fields	Upto K5

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

K1 – KNOWLEDGE (REMEMBERING), K2 – UNDERSTAND, K3 – APPLY K4 – ANALYSE, K5 – EVALUATE

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

355

FIELD THEORY AND ITS EXTENSION

<u>UNIT – I</u>:

Chapter 5: Sections – 5.1, 5.2

Fields-Extension fields-problems- The Transcendence of e

<u>UNIT – II</u>:

Chapter 5: Sections – 5.3, 5.4

Roots of polynomials, construction with straightedge and compass

<u>UNIT – III</u>:

Chapter 5: Sections – 5.5, 5.6

More about roots, The elements of Galois theory

<u>UNIT – IV</u>:

Chapter 5: Sections – 5.7, 5.8

Solvability by Radicals, Galois Groups over the Radicals

<u>UNIT – V</u>:

Chapter 7: Sections – 7.1

Finite Fields

TEXT BOOK:

I. N. Herstein, *Topics in algebra*, Second Edition, Wiley Eastern Edition, New Delhi.2009.

DIGITAL TOOLS:

https://en.wikipedia.org/wiki/Field_extension https://www.researchgate.net/publication/322364793_Field_Extension_by_Galois_Theory https://www.coursera.org/lecture/galois/1–1–field–extensions–examples–G8z9R https://www.google.com/search?q=Field+extension+problems+and+solutions&sa=X&ved=2a hUKEwjIuOe4r_nzAhVuwTgGHdfECHMQ1QJ6BAgTEAE https://mdu.ac.in/UpFiles/UpPdfFiles/2021/Jun/4_06–28–2021_11–45–05_Theory_of_Field Extensions_(20MAT22C1).pdf

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	2	2
CO2	3	2	3	3	2
CO3	2	3	3	2	3
CO4	3	2	2	3	2
CO5	3	3	2	2	3

Mapping of CO with PSO

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Dr. V. RAMAMANI

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

						356	
COURSE CODE	COURSE	COURSE TITLE			P	CREDITS	
21PMSC32	ANALYS	ANALYSIS – III		6	_	5	
YEAR	SEMESTER	INTERNA	L EXTER	NAL		TOTAL	
II	III	25	75			100	
NATURE OF Employability Image: Skill Oriented Image: Skill Oriented							
COURSE				Lintic	prene		

COURSE DESCRIPTION:

Analysis – III in its various versions covers the concepts of Linear transformations and Differentiation, The Contraction principle and Inverse function theorem, Implicit function theorem and Rank theorem. The concepts of Projections, Determinants and Differentiation of integrals. Also the concepts of Lebesgue Outer measure, Measurable sets and functions and regularity and related theorems.

COURSE OBJECTIVES:

To introduce the concepts of functions of severable variables, Lebesgue measure on the real line and Lebesgue Integration.

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	discuss the concepts of Linear transformations and contraction principle.	Upto K5
CO 2	study the implicit function, rank theorems and determinants.	Upto K5
CO 3	understand the concept of measure on the real line.	Upto K5
CO 4	study Regularity and measurable functions.	Upto K5
CO 5	study the integration of functions of a real variable.	Upto K5
L	K1 – KNOWLEDGE (REMEMBERING), K2 – UNDERSTAND, I	K3 – APPLY

K4 – ANALYSE, K5 – EVALUATE

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

<u>ANALYSIS – III</u>

<u>UNIT – I:</u>

Linear transformations – Differentiation – The Contraction principle – Inverse function theorem.

<u>UNIT – II:</u>

Implicit function theorem – Rank theorem – Projections – Determinants – Differentiation of integrals.

<u>UNIT – III:</u>

Measure on the real line – Lebesgue Outer measure – Measurable sets.

<u>UNIT – IV:</u>

Regularity – Measurable functions.

UNIT – V:

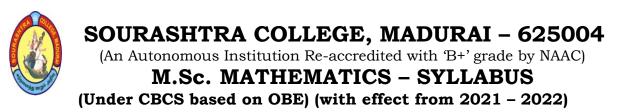
Integration of functions of a real variable – Integration of Non–negative functions – the general integral(Theorems only) – Integration of series.

TEXT BOOKS:

- 1. *Principles of Mathematical Analysis* (3rd edition) by Walter Rudin Mc–Graw–Hill International Editions 1964.
- 2. *Measure Theory and Integration* (2nd Edition) by G. deBarra New Age International Publishers 1981.

REFERENCE BOOKS:

- 1. Real Analysis 3rd Edition H.L.Roydan Prentice Hall of India Pvt. Ltd, 1998
- Mathematical Analysis 2nd Edition Tom M Apostol Narosa Publishing House, 1985


	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	1	1	2	2	2			
CO2	3	2	1	3	2			
CO3	1	3	3	2	3			
CO4	3	2	2	3	2			
CO5	3	3	2	2	3			

Mapping of CO with PSO

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Prof. T. R. DINAKARAN

358

COURSE CODE	COURSE TITLE		CATEGORY	Т	Р	CREDITS
21PMSC33	FUNCTIONAL ANALYSIS – I		CORE – 11		_	5
YEAR	SEMESTER	SEMESTER INTERNA		AL		TOTAL
II	III 25		75			100

NATURE OF	Employability 🖌	Skill Oriented	Entrepreneurship
COURSE			

COURSE DESCRIPTION:

This course is designed to learn various principles of functional analysis

COURSE OBJECTIVES:

- 1. To gain the knowledge of continuous linear transformations
- 2. To prove open mapping theorem.
- 3. To define orthogonal complement.
- 4. To discuss about orthonormal sets.
- 5. To introduce self adjoint operators

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	learn about continuous linear transformations.	Upto K3
CO 2	prove open mapping theorems	Upto K3
CO 3	learn the properties of orthogonal complements	Upto K3
CO 4	discuss orthonormal sets and the adjoint of an operator	Upto K3
CO 5	learn self-adjoint operators and projections	Upto K3
	K1 – KNOWLEDGE (REMEMBERING), K2 – UNDERSTA	ND, K3 – APPLY

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

359

FUNCTIONAL ANALYSIS – I

<u>UNIT – I:</u>

The definition and some examples – Continuous Linear Transformations – The Hahn Banach theorem.

<u>UNIT – II:</u>

The Open Mapping theorem – The conjugate of an operator.

<u>UNIT – III:</u>

The definition and some simple properties - Orthogonal complements

<u>UNIT – IV:</u>

Orthonormal sets – The adjoint of an operator

<u>UNIT – V:</u>

Self adjoint operators – Normal and unitary operators– Projections.

TEXT BOOK:

Introduction to Topology and modern analysis by G.F. Simmons – Tata Mc Graw Hill 2004.

- **UNIT I** Chapter 9 sec 46, 47, 48
- **UNIT II** Chapter 9 sec 50, 51
- **UNIT III** Chapter 10 sec 52,53
- **UNIT IV** Chapter 10 sec 54,56
- **UNIT V** Chapter 10 sec 57, 58, 59

	PSO1 PSO2 PSO3 PSO4 PSO5								
CO1	2	2	3	3	2				
CO2	3	3	2	3	2				
CO3	3	3	2	3	2				
CO4	3	3	3	2	2				
CO5	2	2	2	2	2				

Mapping of CO with PSO

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Prof. G. R. SHYAMALA

SOURASHTRA COLLEGE, MADURAI – 625004 (An Autonomous Institution Re-accredited with 'B+' grade by NAAC) M.Sc. MATHEMATICS – SYLLABUS (Under CBCS based on OBE) (with effect from 2021 – 2022)

360

COURSE CODE	COURSE	TITLE	CATEGORY	Τ	P	CREDITS
21PMSC34	STATIST	TICS – I	CORE – 12	6	_	5
YEAR	SEMESTER	INTERNA	L EXTERN	JAL		TOTAL
II	III	25	75			100
NATURE OF	Employability	🖌 🛛 Skill Oi	riented	Entre	nrene	urship
COURSE					prene	

COURSE DESCRIPTION:

To understand the concept of random variables, Expectations, Chebyshev's Inequality and to identify and apply appropriate probability distributions to solve real life problems. Understand the Sampling theory, various distributions like beta, t, and F distributions to solve statistical problems.

COURSE OBJECTIVES:

To develop the students' ability to deal with numerical and quantitative approach and enable the use of statistical, graphical and algebraic techniques wherever relevant.

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	understand the concept of random variables, Expectations of random variables and Chebyshev's Inequality.	Upto K3
CO 2	study the joint behavior of two random variables and their distributions and extend it to several random variables.	Upto K3
CO 3	identify and apply appropriate probability distributions to solve real life problems.	Upto K3
CO 4	understand the Sampling theory, Transformations f variables and use various distributions like beta, t, and F distributions to solve statistical problems.	Upto K3
CO 5	apply the concepts of convergence; understand central limit theorem and theorems on limiting distributions.	Upto K3

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

<u>STATISTICS – I</u>

361

<u>UNIT – I:</u>

Introduction, set theory, the probability set function, Conditional probability and independence, random variable of the discrete type, random variable of the continuous type, properties of the distribution function, expectation of a random variable, some special expectations, Chebyshev's inequality.

<u>UNIT – II:</u>

Distribution of two random variables, conditional distributions and expectations, the correlation coefficient, independent random variables, extension to several random variables.

<u>UNIT – III:</u>

The binomial and related distributions, The Poisson distribution, The gamma and Chi–square distributions, the normal distributions, the Bivariate normal distribution.

<u>UNIT – IV:</u>

Sampling theory, transformations of variables of the discrete type, transformations of variables of the continuous type, the Beta, t, F distributions

<u>UNIT – V:</u>

Extension of the change–of–variable technique, the moment generating function technique, the distribution of X and nS^2/σ^2 , Expectations of functions of random variables and the Central limit theorem.

TEXT BOOK:

R.V. Hogg and A.T. Craig (2002), *Introduction to Mathematical Statistics*, 5th edition, Pearson Education, Asia.

- Unit-1 Chapter-1 Section 1.1 to 1.10
- Unit-2 Chapter-2 Section 2.1 to 2.5
- Unit-3 Chapter-3 Section 3.1 to 3.5
- Unit-4 Chapter-4 Section 4.1 to 4.4
- Unit-5 Chapter-4 Section 4.5 to 4.8 and 5.3

Mapping of	CO and PSO	
DCOA	DCO1	

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	2	3	2
CO2	2	2	2	2	2
CO3	2	2	3	2	2
CO4	2	2	3	2	2
CO5	2	2	2	2	3

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Prof. K. N. GANESH BABU

Passed in the BOS Meeting held on 19/03/2022

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

362

COURSE CODE	COURSE TITLE		CATEGORY	Т	Р	CREDITS
21PMSN31	BUSINESS STATISTICS		NME – 1	6	-	5
YEAR	SEMESTER	INTERNA	L EXTERN	AL		TOTAL
II	III	25 75				100
<u>.</u>		•				

NATURE OF	Employability	Skill Oriented	Entrepreneurship
COURSE			

COURSE DESCRIPTION:

This course is designed to learn Statistics for non-mathematics students.

COURSE OBJECTIVES:

To enable the students to understand the concepts of central tendencies, standard deviation, skewness, correlation and different methods of index numbers and solve problems .

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
understand Mean, Median, Mode and their merits and demerits	Upto K5
gain knowledge about Skewness, Quartile Deviation, Standard Deviation.	Upto K5
understand Coefficient of Variation, Pearson and Bowley coefficient of skewness.	Upto K5
understand Correlation and Rank Correlation .	Upto K5
gain knowledge about Index Numbers and different methods of finding index numbers.	Upto K5
-	understand Mean, Median, Mode and their merits and demeritsgain knowledge about Skewness, Quartile Deviation, Standard Deviation.understand Coefficient of Variation, Pearson and Bowley coefficient of skewness.understand Correlation and Rank Correlation .gain knowledge about Index Numbers and different methods

GE (REMEMBERING), K2 – UNDERSTA K4 – ANALYSE, K5 – EVALUATE

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

BUSINESS STATISTICS

<u>UNIT – I:</u>

Measures of Central tendency – Definition – Mean – Median – Mode – Their merits and demerits – Weighted Arithmetic Mean.

<u>UNIT – II:</u>

Measures of dispersion and skewness - Range - Quartile deviation - Standard deviation.

<u>UNIT – III:</u>

Coefficient of variation - Pearson and Bowley coefficient of skewness.

$\underline{UNIT - IV:}$

Scatter diagram - Pearson's coefficient of correlation - Rank correlation.

<u>UNIT – V:</u>

Index numbers – Meaning and uses – Methods of construction – Laspeyer's Method, Paasche's Method, Fisher's ideal index.

TEXT BOOK:

Elements of Statistical Methods by S.P. GUPTA, Publishers: Sultan Chand and sons, 16th edition (2005).

REFERENCE BOOK:

Fundamentals of Mathematical Statistics by S. C. Gupta and V. K. Kapoor. Publishers: Sultan Chand and sons, 11th edition (2006).

UNIT – I: Chapter 7, Pages 158 – 198

UNIT - II & UNIT III: Chapters 8 and 9, pages 249 - 277, 315 - 326

UNIT – IV: Chapter 10, pages 371 – 425

UNIT – **V:** Chapter 12, pages 460 – 475

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	1	2	2
CO2	2	2	2	1	1
CO3	2	2	1	2	1
CO4	2	2	1	2	3
CO5	1	2	2	3	2

Mapping of CO with PSO

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Prof. C. K. SIVAKUMAR

363

SOURASHTRA COLLEGE, MADURAI – 625004 (An Autonomous Institution Re-accredited with 'B+' grade by NAAC) M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

364

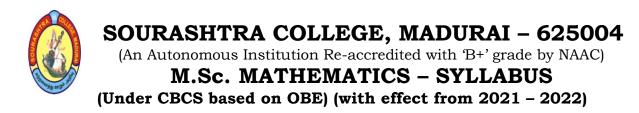
COURSE CODE	COURSE	COURSE TITLE		Т	Р	CREDITS
21PMSN32	MATHEMATICS FOR COMPETITIVE EXAMINATIONS		NME – 2	6	_	5
YEAR SEMESTER INTERNAL EXTERNAL TOTAL						TOTAL
II	III	25	75			100

NATURE OF	Employability 🖌	Skill Oriented		Entrepreneurship	1
COURSE		Skii Orienteu	V]

COURSE DESCRIPTION:

This course is designed to enhance the problem solving skills in the areas of Quantitative Aptitude which will enable the students to achieve in campus placements and competitive examinations. Also this is used to improve the logical thinking and mathematical ability of the students

COURSE OBJECTIVES:


- 1. To apply the knowledge of L.C.M and H.C.F to context based questions.
- 2. To understand the concepts of averages, word problems that deal with the ages of people currently, in the past or in the future.
- 3. To calculate profit and loss, to work with simple ratios and percentage.
- 4. To solve problems involving investments, Simple Interest and Compound Interest formula.
- 5. Understand the relationship between time, speed, distance, work through a variety of activities.

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
find L.C.M & H.C.F, convert between decimals & fractions and applying BODMAS rule.	Upto K5
solve the age based problems and average based problems.	Upto K5
analyse relation between cost price & selling price, gain or loss.	Upto K5
analyse problems on interest, amount, principal & rate of interest, difference between Simple Interest & Compound Interest.	Upto K5
solve problems related to time, work and distance.	Upto K5
	find L.C.M & H.C.F, convert between decimals & fractions and applying BODMAS rule. solve the age based problems and average based problems. analyse relation between cost price & selling price, gain or loss. analyse problems on interest, amount, principal & rate of interest, difference between Simple Interest & Compound Interest.

K4 – ANALYSE, K5 – EVALUATE

365

MATHEMATICS FOR COMPETITIVE EXAMINATIONS

<u>UNIT – I:</u> H.C.F and L.C.M of numbers – Decimal Fractions – Simplifications (examples only)

<u>UNIT – II:</u>

Averages – Problems on numbers – Problems on Ages. (examples only)

<u>UNIT – III:</u>

Percentage – Profit or Loss – Ratio and Proportion (examples only)

UNIT – IV:

Simple Interest – Compound Interest – Allegation of Mixture (examples only)

$\underline{UNIT - V:}$

Calendar – Odd one out & Series – Time & Work – Time & Distance. (examples only)

TEXT BOOK:

Quantitative Aptitude by R. S Agarwal, S.Chand & Co, Publications, Reprint 2009.

DIGITAL TOOLS:

https://youtu.be/57TrYW72Tgg https://youtu.be/_cW7_BUDYcw

	Mapping of CO with PSO								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2			1				
CO2	3	2	1		2				
CO3	3	1	2		2				
CO4	1	3	2	1	2				
CO5	1	3	2	2	1				

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Dr. S. K. KANCHANA

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

366

S. No.	Sub. Code	Subject Title	Hrs. / Week	Exam (Hrs.)	CA	SE	Total Marks	Credits
1.	21PMSC41	Core – 13: Complex Analysis	6	3	25	75	100	5
2.	21PMSC42	Core – 14: Number Theory	6	3	25	75	100	5
3.	21PMSC43	Core – 15: Operations Research	6	3	25	75	100	5
4.	21PMSC44	Core – 16: Statistics – II	6	3	25	75	100	5
5.	21PMSE41	Elective: 1. Advanced Topology	6	3	25	75	100	5
	21PMSE42	2. Functional Analysis – II			-		100	
		Total	30					25

COURSE STRUCTURE – IV SEMESTER

- CA Class Assessment (Internal)
- **SE** Summative Examination
- NME Non Major Elective
- T Theory
- P Practical

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

367

COURSE CODE	COURSE	TITLE	CAT	TEGORY	Τ	P	CREDITS
21PMSC41	COMPLEX	ANALYSIS	CO	RE – 13	6	_	5
YEAR	SEMESTER	INTERNA	L	EXTERN	AL		TOTAL
II	IV	25	75				100
NATURE OF COURSE	Employability	✓ Skill O	rientee	d 🖌 I	Entrej	prene	urship

COURSE DESCRIPTION:

Topics to be discussed include the algebra of complex numbers – the geometrical representation of complex numbers. Introduction to the concept of analytic function – Elementary theory of power series – The exponential and trigonometric series – Conformality – linear transformations – elementary conformal mappings – Fundamental theorems – Cauchy's integral formula – local properties of analytic functions. The general form of Cauchy's theorem – the calculus of residues.

COURSE OBJECTIVES:

To discuss main concepts of complex analysis, explain the definition and concepts of analytic function and power series, define the conformality concept and elementary conformal mappings, to prove fundamental theorems and Cauchy's integral formula, to find the residues and to explain general from of Cauchy's theorem.

COURSE OUTCOMES (COs):

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	calculate the absolute values of the complex numbers and Inequalities and Identities.	UptoK5
CO 2	explain the concepts of power series and trigonometric series and analytic function.	Upto K5
CO 3	identify the various types of transformations and to explain the conformality concepts	UptoK5
CO 4	prove the cauchy's integral formula and to do the problems based on the formula.	UptoK5
CO 5	explain the general form of cauchy's theorem and to find residues.	Upto K5
	K1 – KNOWLEDGE (REMEMBERING), K2 – UNDERSTAND,	K3 – APPLY

K4 – ANALYSE, K5 – EVALUATE

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

368

COMPLEX ANALYSIS

UNIT - I:

The algebra of complex numbers – the geometrical representation of complex numbers.

UNIT – II:

Introduction to the concept of analytic function – Elementary theory of power series – The exponential and trigonometric series.

UNIT – III:

Conformality – liner transformations – elementary conformal mappings.

UNIT – IV:

Fundamental theorems – Cauchy's integral formula – local properties of analytic functions.

UNIT – V:

The general form of Cauchy's theorem – the Calculus of residues.

TEXT BOOK:

Complex Analysis by L. V. Ahlfors III edition Megraw Hill, ISE.1981.

	Mapping of CO with PSO									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	1	1	2	2	2					
CO2	3	2	2	3	2					
CO3	2	3	3	2	3					
CO4	3	2	2	3	2					
CO5	2	3	2	2	3					

3. Advanced Application **2.** Intermediate Development **1.** Introductory Level

COURSE DESIGNER: Prof. M. N. SAROJA

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 – 2022)

369

COURSE CODE	COURSE TITLE		CATEGORY		Т	Р	CREDITS	
21PMSC42	NUMBER '	ГHEORY	CORE – 14		6	١	5	
YEAR	SEMESTER	SEMESTER INTERNAL		L EXTERNAL		TOTAL		
II	IV	25		75		100		
NATURE OF Employability 🖌 Skill Oriented 🖌 Entrepreneurship								
COURSE			iene			, i chic		

COURSE DESCRIPTION:

This course is designed to make the students understand the concepts of Number

Theory.

COURSE OBJECTIVES:

- 1) To define various types of numbers, GCD and arithmetic functions.
- 2) To explain various functions like Liouville's function, divisor function.
- 3) To make the students acquire knowledge about congruence, residue and the related theorems like Euler Fermat, Lagrange's theorem.
- 4) To help the students study the Chinese remainder theorem and its applications, quadratic residue, Legender symbol.
- 5) To discuss on quadratic reciprocity law, Jacobi symbol, Guass Lemma.
- 6) To enable the students acquire the knowledge of number theory.
- To enable the students understand the concepts of prime numbers, various functions like Mobius, Euler Totient, arithmetic Liouville, Bell Series etc., Congruence, Jacobi symbols, quadratic reciprocity law.

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	apply Euclidean algorithm, to find gcd of two or more numbers.	Upto K3
CO 2	find Bell series, power series	Upto K3
CO 3	employ congruence and Lagrange's theorem	Upto K3
CO 4	employ simultaneous linear congruence, quadratic residue and to evaluate $(-1 p)$ and $(2 p)$	Upto K3
CO 5	apply reciprocity laws and Jacobi symbols	Upto K3

K1 – KNOWLEDGE (REMEMBERING), K2 – UNDERSTAND, K3 – APPLY

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

NUMBER THEORY

<u>UNIT – I</u>:

 $\label{eq:constraint} \begin{array}{l} \mbox{Introduction} - \mbox{Divisibility} - \mbox{G.C.D} \ , \mbox{Prime number} - \mbox{The fundamental theorem of arithmetic} - \mbox{The series of reciprocals of the prime} - \mbox{The Euclidean algorithm} - \mbox{G.C.D} \ of more than 2 \ numbers - \mbox{The Mobius function} - \mbox{Euler Totient, connecting relation Product formula} - \mbox{The Dirichlet product of arithmetic function, Dirichlet inverse and the Mobius inversion formula}. \end{array}$

<u>UNIT – II</u>:

The Mangold function, the multiplicative function and Dirichlet multiplication, the inverse of a completely multiplicative functions. Liouville's function – The divisor function, Generalized convolutions, formula power series, The bell series of an arithmetic function, bell series and Dirichlet multiplication, derivatives of arithmetic functions, the Selbergidentity – Big on notation – Euler's summation formula – some elementary asymptotic formula.

<u>UNIT – III</u>:

Definition and basic properties of congruence – residue classes and complete residue system – linear congruence reduced residues system and Euler Fermat's theorem – polynomial congruence modulo p – Lagrange's theorem – application of Lagrange's theorem.

$\underline{UNIT - IV}$:

Simultaneous linear congruence – Chinese remainder theorem, Application of Chinese remainder theorem – polynomial congruence with, prime power moduli – The principal of cross classification – decomposition property of reduced residue system, quadratic residue, Legender's symbols and its properties – Evaluation of (-1/p) and (2/p) – Gauss lemma.

$\underline{UNIT - V}$:

The quadratic reciprocity law, application of reciprocity laws – Jacobi symbol, gauss sums and quadratic reciprocity law.

TEXT BOOK

Introduction to Analytic Number Theory – Tom M. Apostol (III Edition) (Narosa Publications 1991).

Chapters – 1, 2, 3, 5 and 9.

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3				
CO2		2			
CO3			3		
CO4				3	
CO5					3

Mapping of CO with PSO

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Prof. N. H. SARAVANAN

370

SOURASHTRA COLLEGE, MADURAI – 625004 (An Autonomous Institution Re-accredited with 'B+' grade by NAAC) M.Sc. MATHEMATICS – SYLLABUS (Under CBCS based on OBE) (with effect from 2021 – 2022)

371

COURSE CODE	COURSE	TITLE	CATEGORY	Τ	Р	CREDITS	
21PMSC43	OPERA' RESEA	CORE – 15	6	_	5		
YEAR	SEMESTER	JAL		TOTAL			
II	IV	25	75			100	
NATURE OF	Employability	Skill O	riented	Entre	nrene	urship	
COURSE				Entre	prene		

COURSE DESCRIPTION:

This course is designed to make the students understand the concepts of PERT, CPM and Non LPP problems.

COURSE OBJECTIVES:

Formulating the shortest route and determining optimal solution, Constructing the project network, Analysing pure birth model, pure death model and poisson queuing model, Determining maxima and minima points for unconstrained and constrained functions, Solving non LPP using various methods.

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to
--

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	find shortest route using various algorithms	Upto K5
CO 2	find critical path and determining floats	Upto K5
CO 3	develop mathematical and modeling skills required to evaluate queuing systems.	Upto K5
CO 4	use Jacobian and Lagrangean methods for problems with equality constraints, KKT conditions for problems with inequality constraints.	Upto K5
CO 5	solve unconstrained problems using Direct search method and Gradient method	Upto K5

K1 – KNOWLEDGE (REMEMBERING), K2 – UNDERSTAND, K3 – APPLY K4 – ANALYSE, K5 – EVALUATE

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

372

OPERATIONS RESEARCH

<u>UNIT – I:</u>

Scope of Network applications – Definitions – Minimal spanning tree algorithm – Shortest route problems using cyclic and acyclic algorithms, Dijkstra method only – Maximal flow model (Algorithm only).

<u>UNIT – II:</u>

CPM and PERT Network representation – critical path computations – Determination of floats – Total float and free float – PERT Networks.

<u>UNIT – III:</u>

Why study queues? – Elements of queuing models – Role of exponential distribution – Pure birth and death models – Generalised Poisson queuing models – steady state measures of performance – Specialized Poisson queue – (M / M / 1):

 $(GD / \infty / \infty) - (M / M / 1) : (GD / N / \infty).$

<u>UNIT – IV:</u>

Classical optimization theory – Unconstrained problems – Necessary and sufficient conditions – Newton Raphson method – Constrained problems – Equality constraints by Jacobian method – Lagrangean method and Kharush Kuhn Tucker (KKT) conditions. (Simple problems only)

$\underline{UNIT - V:}$

Non – linear programming – Unconstrained algorithms – Direct search method – Gradient method – Constrained algorithm – Geometric programming – Quadratic programming model.

TEXT BOOK:

An Introduction to Operations Research, – 6th edition by H. A. TAHA.

- **UNIT I** : Chapter 6– Section 6.1 to 6.4, 6.4.2, 6.5, 6.5.2.
- **UNIT II** : Chapter 6 Section 6.7, 6.7.1, 6.7.2 & 6.7.3.
- **UNIT III** : Chapter 17 Section 17.1 to17.3, 17.3.1, 17.4, 17.4.1, 17.4.2, 17.5, 17.6, 17.6.1, 17.6.2.
- UNIT IV : Chapter 20 Section 20.1, 20.2, 20.2.1, 20.2.2, 20.3, 20.3.1, example problems20.3.1 & 20.3.2 only. Lagrangean method– eg. 20.3.4 & 20.3.5 only. KKT conditions eg. 20.3.7.
- UNIT V : Chapter 21 Section 21.1, 21.1.1, 21.1.2, 21.2, 21.2.2, 21.2.3. (simple problems only)

DIGITAL TOOLS:

https://en.m.wikipedia.org/wiki/Program_evaluation_and_review_technique https://en.m.wikipedia.org/wiki/Birth%E2%80%93death_process

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	1	2
CO2	3	3	1	2	3
CO3	2	2	2	1	2
CO4	1	3	3	1	3
CO5	1	3	2	2	1

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Dr. S. K. KANCHANA

SOURASHTRA COLLEGE, MADURAI – 625004 (An Autonomous Institution Re-accredited with 'B+' grade by NAAC) M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

373

COURSE CODE	COURSE	TITLE	CATEGORY	Т	Р	CREDITS	
21PMSC44	STATIST	CORE – 16	6	-	5		
YEAR	SEMESTER INTERNAL EXTERNAL TOTAL						
II	IV	25	75	100			
NATURE OF COURSE	Employability	✓ Skill O	riented 🖌 🗄	Entre	prene	urship	

COURSE DESCRIPTION:

This course is designed for the students to learn Statistics at an advanced level and to solve problems in this course.

COURSE OBJECTIVES:

To enable the students to understand the concepts of estimators, confidence intervals, sufficient statistic, test of equality of means and to gain knowledge about Fisher Information, Rao–Cramer Inequality, Likelihood ratio tests and Sequential Probability Ratio Tests, Distribution of Quadratic Forms and to apply the knowledge gained in solving problems

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to
--

No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CO 1	understand the concept of point estimation, confidence intervals and applies chi–squared tests to test the hypotheses.	Upto K5
CO 2	gain knowledge about sufficient statistic, completeness and unique	Upto K5
CO 3	understand Fisher Information and Rao–Cramer Inequality	Upto K5
CO 4	analyze Best Tests, Likelihood Ratio Tests and Sequential Probability Ratio Tests and applies to statistical hypotheses.	Upto K5
CO 5	gain knowledge about distribution of quadratic forms, test of equality of means and understands the related concepts	Upto K5

K4 – ANALYSE, K5 – EVALUATE

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

374

<u>STATISTICS – II</u>

<u>UNIT – I:</u>

Point estimation, confidence intervals for means, confidence intervals for Differences of means, Tests of Statistical Hypotheses, Chi–squared tests.

<u>UNIT – II:</u>

Measures of quality of estimators, A sufficient statistic for a parameter, Properties of a sufficient statistic, completeness and uniqueness. The exponential class of Probability density functions. Functions of a parameter, the case of several parameters.

UNIT –III:

Fisher information and the Rao–Cramer inequality, Limiting Distribution of maximum likelihood estimators.

<u>UNIT – IV:</u>

Certain best tests, uniformly most powerful tests, Likelihood ratio tests, the sequential probability ratio test.

<u>UNIT – V:</u>

Distributions of certain quadratic Forms, A test of the equality of several means, Noncentral chi–square and non central F.

TEXT BOOK:

Introduction to Mathematical Statistics, V Edition, by R.V.Hogg and A.T.Craig, Pearson Education, Asia, 2002.

REFERENCE BOOK:

Elements of Statistical Methods by S.P.Gupta, Publishers : Sultan Chand and Sons, 16th edition (2005)

- UNIT I : (Relevant sections in chapter 6).
- UNIT II : (Relevant sections in chapter 7)
- UNIT III : (Relevant sections in chapter 8)
- UNIT IV : (Relevant sections in chapter 9)
- UNIT V : (Relevant sections in chapter 10)

Mapping of CO with PSO

		BB	00 1111 00		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	3	3
CO2	3	3	2	2	1
CO3	2	3	3	1	2
CO4	2	3	3	3	1
CO5	3	3	2	2	3

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Prof. C. K. SIVAKUMAR

SOURASHTRA COLLEGE, MADURAI – 625004 (An Autonomous Institution Re-accredited with 'B+' grade by NAAC) M.Sc. MATHEMATICS – SYLLABUS (Under CBCS based on OBE) (with effect from 2021 – 2022)

375

COURSE CODE	COURSE	COURSE TITLE CATEGORY T P CREDIT							
21PMSE41	ADVA TOPOI		ELECTIVE	6	-	5			
YEAR	SEMESTER	INTERNAI	L EXTERN	JAL		TOTAL			
II	IV	IV 25 75				100			
NATURE OF		/ Skill Or	ionted (Entro	2 10 10 0	urshin			

COURSE DESCRIPTION:

COURSE

This Course gives a solid background for studies in topology, and develop geometrical ideas and algebraic methods. The course supports studies in related subjects in algebra and geometry. Topics that can be discussed include, The Tychnoff Theorem, Complete Metric Spaces, The Smirnov Metrization Theorem , and many others.

COURSE OBJECTIVE:

To enable the students understand the advance concepts in Topology

COURSE OUTCOMES (COs):

After the completion of the course, the students will be able to

The Tychnoff Theorem – The Stone – Cech	
ctification – Local Finiteness	Upto K5
The Nagata –Smirnov Theorem –Para etness –The Smirnov Metrization Theorem	Upto K5
Complete Metric Spaces – A Space Filling	Upto K5
information on Compactness in Metric Spaces – se and Compact Convergences –Ascoli's n	Upto K5
rate on Baire Spaces – A nowhere differentiable	Upto K5
	1

K4 – ANALYSE, K5 – EVALUATE

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

ADVANCED TOPOLOGY

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

376

<u>UNIT I:</u>

The Tychnoff Theorem – The Stone – Cech Compactification – Local Finiteness

UNIT II:

The Nagata – Smirnov Theorem – Para Compactness – The Smirnov Metrization Theorem

UNIT III:

Complete Metric Spaces – A Space Filling Curve

UNIT IV:

Compactness in Metric Spaces – Pointwise and Compact Convergences – Ascoli's Theorem

UNIT V:

Baire Spaces – A nowhere differentiable function

TEXT BOOK:

Topology by J. R. Munkres (second edition) – June 2002

Unit I :	Chapter 5:	Sections 6, 37, 38 & 39
Unit II:	Chapter 6:	Sections 40, 41, 42
Unit III:	Chapter 7:	Sections 43, 44
Unit IV:	Chapter 7:	Sections 45, 46, 47
Unit V:	Chapter 8:	Sections 48, 49

Mapping of CO with PSO

		11 8			
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	3	3	2	2
CO2	3	2	3	2	2
CO3	2	3	3	2	3
CO4	3	2	2	3	2
CO5	3	3	3	2	2

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Dr. V. RAMAMANI

Passed in the BOS Meeting held on 19/03/2022

SOURASHTRA COLLEGE, MADURAI – 625004 (An Autonomous Institution Re-accredited with 'B+' grade by NAAC) M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

377

COURSE CODE	COURSE TITLE		CATEGORY		Т	Р	CREDITS	
21PMSE42	FUNCTIONAL ANALYSIS – II		ELECTIVE		6	_	5	
YEAR	SEMESTER	INTERNAL		EXTERNAL		TOTAL		
II	IV	25		75			100	

NATURE OF COURSE	Employability 🗸	Skill Oriented 🖌	Entrepreneurship
---------------------	-----------------	------------------	------------------

COURSE DESCRIPTION:

This course is designed to explain various concepts, Basic definitions and Applications in Functional Analysis.

COURSE OBJECTIVES:

To make the students understand the advance concepts in functional analysis.

A	After completing this course the students are able to				
No.	Course Outcomes	Knowledge Level (According to Bloom's Taxonomy)			
CO 1	understand the basic Knowledge of Matrices, Determinants, Spectrum of an operators, Simple Theorem	Upto K3			
CO 2	apply the definition of Regular and Singular elements and Basic Theorems	Upto K3			
CO 3	apply the formula for spectral radius and simple theorem	Upto K3			
CO 4	discuss Gelfand mapping concepts and applications of various theorems	Upto K3			
CO 5	apply the basic definitions and study the Gelfand Neuman theorem	Upto K3			

COURSE OUTCOMES (COs):

After completing this course the students are able to

K1 – KNOWLEDGE (REMEMBERING), K2 – UNDERSTAND, K3 – APPLY

(An Autonomous Institution Re-accredited with 'B+' grade by NAAC)

M.Sc. MATHEMATICS – SYLLABUS

(Under CBCS based on OBE) (with effect from 2021 - 2022)

FUNCTIONAL ANALYSIS – II

<u>UNIT – I:</u>

Matrices-Determinants and Spectrum of an operator-The Spectral Theorem.

<u>UNIT – II:</u>

The definition and some examples-Regular and Singular Elements-Topological divisors Zero.

<u>UNIT – III:</u>

The Spectrum-The Formula for the Spectral Radius.

UNIT – IV:

The Gelfand mapping – Applications of the formula $r(x)=\lim ||X^n||^{1/n}$.

<u>UNIT – V:</u>

Involution in Banach Algebras - The Gelfand Neuman Theorem.

TEXT BOOK:

Introduction to Topology and Modern Analysis by G.F. Simmons Tata Mc Graw Hill-2004

UNIT-1	Chapter-11	Sections 60,61,62
UNIT–2	Chapter-12	Sections 64,65,66
UNIT-3	Chapter-12	Sections 67,68
UNIT-4	Chapter-13	Sections 70,71
UNIT-5	Chapter-13	Sections 72,73

	Mapping of CO and PSO					
	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	2	2	2	2	3	
CO2	2	2	3	2	2	
CO3	2	2	2	3	2	
CO4	3	2	2	2	2	
CO5	2	2	3	2	3	

3. Advanced Application 2. Intermediate Development 1. Introductory Level

COURSE DESIGNER: Prof. K. N. GANESH BABU

